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A B S T R A C T

TGEV can induce IFN-β production, which in turn plays a vital role in host antiviral immune responses. Our
previous studies showed that TGEV infection activated p53 signaling to induce host cell apoptosis, which might
influence virus replication. However, whether there be an interaction between p53 and IFN-β signaling in the
process of TGEV infection is unknown. In the present study, we used low dose of TGEV to infect p53 wild-type
PK-15 cells (WT PK-15 cells) and p53 deficient cells (p53-/- PK-15 cells), to investigate the modulation of IFN
signaling and virus replication by p53. The results showed that the IFN-β expression and production were no-
tably inhibited in p53-/- PK-15 cells compared with that in WT PK-15 cells at early stage of TGEV infection. In
addition, TGEV-induced the changes in mRNA levels of TRIF, TRAM, MDA5, RIG-I, IPS-1, IRF9, IRF3, ISG15 and
ISG20 were notably hindered in p53-/- PK-15 cells before 36 h post infection (p.i.). Moreover, TGEV genomic
RNA and sub genomic mRNA (N gene and ORF7) levels showed significant increase in p53-/- PK-15 cells
compared with WT PK-15 cells after TGEV infection. And viral titers were observably enhanced in p53-/- PK-15
cells. Furthermore, exogenous IFN-β and polyinosinic-polycytidylic acid (poly (I:C)) treatment markedly in-
hibited the mRNA levels of TGEV gRNA, N and ORF7 in WT PK-15 cells and p53-/- PK-15 cells compared to
control. Taken together, these results demonstrated that p53 may mediate IFN-β signaling to inhibit viral re-
plication early after TGEV infection.

1. Introduction

Tumor suppressor p53 could be activated in response to several
stimuli, such as oncogenic stress, DNA damage and virus infections, to
control cell senescence, cell cycle and cell apoptosis (Levine, 1997).
Numbers of studies have showed that p53 plays an important roles in
regulating virus replication and infection (Muñoz-Fontela et al.,
2008a). For instance, overexpression of p53 inhibited infectious bursal
disease virus (IBDV) replication (Ouyang et al., 2017); Influenza virus
can promote p53 to inhibit virus replication (Turpin et al., 2005); Early
after vesicular stomatitis virus (VSV) infection, viral replication was
markedly inhibited by p53-dependent increase of interferon (IFN)
production (Muñoz-Fontela et al., 2008a). During host antiviral de-
fense, Type I IFN plays pivotal roles in adaptive and innate immune
responses against virus infections (Pitha, 2004; Zhu et al., 2017). RNA
virus genomes replication produces double stranded (ds) RNA which
can be recognized by RIG-I-like receptors (RLRs) or Toll-like receptors
(TLRs), subsequently leading to the type I IFN synthesis and secretion

(Narayan et al., 2010). Consequently, the secretion of type I IFN pro-
motes IFN-stimulated genes (ISGs) to act antiviral function (Wong and
Chen, 2016). A lot of studies have shown that several ISGs and inter-
feron regulatory factors (IRFs) were directly trans-activated by p53 in
response to viral infections (Nakamura et al., 2001; Takaoka et al.,
2003). For example, IRF5 (Mori et al., 2002), ISG15 (Park et al., 2016),
IRF9 (Muñoz-Fontela et al., 2008b) and retinoic-acid inducible gene-I
(RIG-I) (Hsu et al., 2012), which were involved in type I IFN-mediated
antiviral response, are p53 target genes.

Transmissible gastroenteritis virus (TGEV) is a well-known etiolo-
gical agent that cause transmissible gastroenteritis in piglets (Eleouet
et al., 1995). It can replicate in enterocytes, leading to vomiting, watery
diarrhea, and then dehydration, which produces high mortality in
neonatal pigs. (Eléouët et al., 2000). TGEV belongs to the genus Al-
phacoronavirus, which are within the family Coronaviridae (Adams et al.,
2012). TGEV, as an enveloped virus, possesses a large, single-stranded,
positive-sense RNA genome (Curtis et al., 2002). Previous researches
indicated that TGEV infection induced IFN-β production which exerts
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antiviral abilities (Naidoo and Derbyshire, 1992; Riffault et al., 2001;
Zhu et al., 2017). Beyond that, TGEV infection activated p53, which
may play an essential role in regulating antiviral response (Ding et al.,
2014; Huang et al., 2013). These observation hint possible cooperation
between p53 and type I IFN in regulating immune response against
TGEV infection. Here, we investigated the roles of p53 in regulation of
IFN-β production and IFN-β signaling, and the effect on viral replication
in response to TGEV infection with low viral loads.

2. Materials and methods

2.1. Cells and viruses

The p53 deficient PK-15 cells (p53-/- PK-15 cells) have been con-
structed according to the description by Xu et al (Ding et al., 2018; Xu
et al., 2016). p53-/- PK-15 cells and wild type p53 PK-15 cells (WT)
were grown in Dulbecco Minimal Essential Medium (Gibco BRL, MD,
USA) including 10% fetal bovine serum (Gibco BRL, MD, USA) at 37 °C
in a humidified 5% CO2. The TGEV strain was used as our previously
described (Ding et al., 2012). Virus titers were measured by TCID50 as
previously described (Reed and Muench, 1938). Pan apoptosis inhibitor
Z-VAD-FMK and RLR-pathway inhibitor BX795 (Wahadat et al., 2018)
were purchased from Selleck Chemicals (Selleck Chemicals, TX, USA).
TRIF inhibitor resveratrol was purchased from MCE (MedChemExpress,
NJ, USA).

2.2. Real-time quantitative PCR

RNA extraction and qRT-PCR were performed as our previously
described (Ding et al., 2012). Primer sequences for qRT-PCR are listed
in Table 1. qRT-PCR was performed in Roche LightCycler® 480II (Roche
Diagnostics, Basel, Switzerland) under the requirements of manu-
facturer’s protocol.

2.3. ELISA assay

The production of IFN-β were measured by Porcine Interferon β
(IFN-β) ELISA kit (Shenzhen ziker Biological Technogy Co., Ltd,
Shenzhen, China) according to the manufacture’s recommendations.
Briefly, the culture supernatants were added to microelisa stripplate
wells to combine with the specific antibody. Next, Horseradish
Peroxidase-conjugated antibody was added and incubated. After free
components were washed away, each well was added the tetra-
methylbenzidine (TMB) substrate solution. The optical density (OD)
was finally measured spectrophotometrically at 450 nm after the ad-
dition of the stop solution. The concentration of IFN-β in the samples
were calculated through comparing the OD of samples to the standard

curve.

2.4. Statistical analysis

The data are mean ± SEM, which were from three independent
experiments in parallel (triplicate). The results were analyzed by one-
way analysis of variance. P < 0.05 was considered significant.

3. Results

3.1. p53 promotes the IFN-β expression and production in TGEV-infected
cells

To investigate the implied possible cooperation between p53 and
IFN-β in regulation of host immune response against TGEV infection,
we infected WT and p53-/- PK-15 cells with TGEV to examine the
mRNA levels of IFN-β. As shown in Fig. 1A, with 0.1 MOI of TGEV
infection, the mRNA levels of IFN-β significantly increased at 6 h post
infection (p.i.) and reached the peak at 24 h, then decreased at 36 h in
WT PK-15 cells, while in p53-/- PK-15 cells, IFN-β mRNA levels in-
creased with infectious time. And IFN-β mRNA levels were markedly
impaired in p53-/- PK-15 cells at 6, 12 and 24 h p.i. compared with that
in WT PK-15 cells (P < 0.01).

To further confirm the contribution of p53 to IFN-β, the levels of
IFN-β secreted by infected cells were explored. As shown in Fig. 1B,
upon TGEV infection, the secretion of IFN-β showed a time-dependent
increase, while the concentration was significantly inhibited in p53-/-
PK-15 cells, compared with the levels in WT PK-15 cells. The results
were similar to IFN-β mRNA levels. These data indicated that p53 in-
fluence IFN-β mRNA expression and secretion in TGEV-infected cells.

3.2. p53 upregulates TRIF, TRAM and RIG-I/MDA-5 expression during
TGEV infection

Virus could mediate toll-like receptor (TLRs) and RIG-I/MDA5
pathways to activate type I IFN (Broquet et al., 2011; Eo et al., 2014),
which play an important role in antiviral response. To determine the
mechanisms that p53 might influence IFN-β, we therefore analyzed
TLRs and RIG-I/MDA5 pathways expression by qRT-PCR with TGEV
infection at low viral loads. Results showed that with the exception of
MyD88, TGEV infection resulted in up-regulation of TRIF, TRAM,
MDA5, RIG-I and IPS-1 mRNA levels in both WT and p53-/- PK-15 cells.
However, these factors mRNA levels in TGEV-infected p53-/- PK-15
cells were notably hindered before 36 h, compared with the levels in
WT cells (Fig. 2A–F).

To confirm the role of p53 in TLRs and RIG-I/MDA5/IPS-1 pathways
to activate IFN-β, we used the inhibitors of each pathways to treat WT

Table 1
Sequences of primer pairs used for qRT-PCR.

Gene Forward primer (5′–3′) Reverse primer (5′–3′) Accession no.

IFN-β TGCATCCTCCAAATCGCTCT ATTGAGGAGTCCCAGGCAAC NM_001003923.1
MyD88 CCATTCGAGATGACCCCCTG TAGCAATGGACCAGACGCAG EU056736.1
TRIF GCTCCCGAGCTGGAGTTATC GGTACCTGGAAATCCTCGCA KC969185.1
TRAM TCCGTGAACAGACAGCACAA GCCACGACTTTCTTCCTCCA NM_001204351.1
MDA5 CACTTGCCCGCGAATTAACA GTCCGAGACGTCCAGACTTG NM_001100194.1
RIG-I GTGTGCGGTGTTTCAGATGC AGCCTGCTGCTCGGATATTT EU126659.1
IPS-I CCTCTGGGACCTCTTCGACA GCTGTTTGAATTCCGCAGCA NM_001097429.1
IRF3 GTCACAAGCCTGACGGTGA GAGCGTCTGCTTCCTTCGAT EU294308.1
IRF9 ATCCTCCAGGACCCCTTCAA AACCCTACCTTCCGGAGACT NM_001078670.1
ISG20 CTATACCATCTACGACACCGCC TGGCATCTTCCACCGAGTT NM_001005351
ISG15 CGTGCAAGCTGACCAGTTCT CACGGTGCACATAGGCTTGA EU647216.1
TGEV-ORF7 CGTGGCTATATCTCTTCTTTTACTTTAACTAG AAAACTGTAATAAATACAGCATGGAGGA AJ271965
TGEV-N CGTGGCTATATCTCTTCTTTTACTTTAACTAG TCTTCCGACCACGGGAATT AJ271965
TGEV-gRNA GTGAGTGTAGCGTGGCTATA TCCTTACGATCGCAATCAA AJ271965
β-actin GGACTTCGAGCAGGAGATGG AGGAAGGAGGGCTGGAAGAG XM_003124280.1
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and p53-/- PK-15 cells, then the mRNA levels of IFN-β were detected.
Results showed that resveratrol and BX795 significantly decreased the
mRNA levels of TRIF and RIG-I in TGEV-infected WT PK-15 cells, re-
spectively (Fig. 3A and C). And the two inhibitors obviously down-
regulated TGEV-induced IFN-β mRNA expression in p53-/- PK-15 cells
and WT PK-15 cells (Fig. 3B and D). These findings suggest that p53
might play a broader regulation role in TRIF, TRAM and RIG-I/MDA5/
RIG-1 pathways to activate IFN-β.

3.3. p53 enhances the expression of ISGs upon TGEV infection

To test whether p53 mediated IFN-β signaling during TGEV

infection, we examined the mRNA levels of IRF9, IRF3, ISG15 and
ISG20. Fig. 4A–C demonstrates a higher increase of these IFN-related
genes in WT PK-15 cells before 36 h p.i., compared with that in p53-/-
PK-15 cells. These results manifest that p53 may regulate ISGs and IRFs
expression during TGEV infection.

3.4. p53 suppresses viral replication upon TGEV infection with a low viral
load

To test the role of p53 in TGEV replication, we measured the viral
genes expression and virus titers in WT and p53-/- PK-15 cells, which
were infected with 0.1 MOI of TGEV. Virus genomic RNA (gRNA) and

Fig. 1. p53 enhanced the IFN-β mRNA ex-
pression and production in TGEV-infected
cells. (A) The mRNA levels of IFN-β. WT and
p53-/- PK-15 cells were infected with TGEV at
MOI of 0.1 for different time. The cells were
collected and subjected to qRT-PCR analysis.
(B) The secretion of IFN-β. WT and p53-/- PK-
15 cells were treated as in A, the supernatants
from TGEV-infected cells were collected and
then analyzed by ELISA assay. All the data are
mean ± SEM. * P < 0.05, ** P < 0.01 was
considered significant.

Fig. 2. p53 regulated TRIF, TRAM and RIG-I/MDA5/IPS-1 pathways upon TGEV infection. (A–F) The mRNA levels of MyD88, TRIF, TRAM, RIG-I, MDA5 and IPS-1,
respectively. WT and p53-/- PK-15 cells were infected with TGEV at MOI of 0.1 for different time. The cells were collected and subjected to qRT-PCR analysis. Data
are mean ± SEM. * P<0.05, ** P < 0.01 was considered significant.
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sub genomic mRNA (sgmRNA) levels in WT and p53-/- PK-15 cells were
analyzed at 6, 12, 24 and 36 h p.i. by qRT-PCR. Results showed that the
levels of TGEV gRNA, sgmRNA-ORF7 and sgmRNA-N were remarkably
increased in p53-/- PK-15 cells at 24 and 36 h p.i. compared with that in
WT PK-15 cells (Fig. 5A–C). To further confirm the result, we compared
TGEV titers in WT and p53-/- PK-15 cells. As expected, viral titers
obviously increased in p53-/- PK-15 cells compared with that in WT PK-
15 at 24 and 36 h p.i. (Fig. 5D).

To investigate whether the inhibition of p53 on TGEV replication in
WT cells was dependent on proapoptotic signal, we used the pan
apoptosis inhibitor Z-VAD-FMK to treat p53-/- PK-15 and WT PK-15
cells, and TGEV genomic RNA and sub genomic mRNA expression were

detected. Results showed that Z-VAD-FMK down-regulated the levels of
TGEV gRNA and sgmRNA-N, whereas the genes expression in WT PK-15
cells was lower than that in p53-/- PK-15 cells (Fig. 5E). These results
suggest that p53 might through activating type I IFN signaling to inhibit
viral replication during TGEV infection, and the apoptosis might be
benefit to viral replication.

3.5. Antiviral effect of poly (I:C) stimulation is hindered in p53-/- PK-15
cells

Polyinosinic-polycytidylic acid (poly (I:C)), regarded as pathogen-
associated molecular pattern, drives interferon stimulated genes (ISGs)

Fig. 3. The effect of TLRs and RLR pathways
inhibitors on the mRNA expression of IFN-β
upon TGEV infection. WT and p53-/- PK-15
cells were treated with resveratrol (20 μM) (A
and B) and BX795 (1 μM) (C and D), and then
infected with TGEV at MOI of 0.1 for 24 h. The
cells were collected and subjected to qRT-PCR
analysis. Data are mean ± SEM. * P < 0.05,
** P < 0.01 was considered significant.

Fig. 4. p53 increased the expression of IFN-
related genes upon TGEV infection. (A–D) The
mRNA levels of IRF9, IRF3, ISG15 and ISG20,
respectively. WT and p53-/- PK-15 cells were
infected with TGEV at MOI of 0.1 for different
time. The cells were collected and subjected to
qRT-PCR analysis. Data are mean ± SEM. *
P < 0.05, ** P < 0.01 was considered sig-
nificant.
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expression to inhibit virus replication (Liu et al., 2009). To further
confirm the role of p53 in regulating IFN signaling and virus replication
during TGEV infection, we treated the cells with poly (I:C) (Invivogen,
Hong Kong Science Park Shatin, Hong Kong) to detect the expression of
IFN-β, ISG15, TGEV gRNA and sgmRNA. We showed that poly (I:C)
prominently enhanced the mRNA levels of IFN-β and ISG15, and the
levels of ISG15 were remarkably upregulated in TGEV and poly (I:C)-
cotreated PK-15 cells compared to poly (I:C) treatment or TGEV in-
fection respectively. However, the response in p53-/- PK-15 cells was
lower than that in WT PK-15 cells (Fig. 6A and B). Moreover, Poly (I:C)
treatment significantly inhibited the expression of TGEV gRNA, N and
ORF7 in WT PK-15 cells and p53-/- PK-15 cells compared to control,
but viral gene levels in WT PK-15 cells were much more impaired than
in 53-/- PK-15 cells, suggesting that p53 play an essential role in poly
(I:C)-inhibited TGEV replication (Fig. 6C–E). To approve the effect of
poly (I:C) stimulation, we used the exogenous IFN-β (Medicine Nest
Chemdrug, Shanghai, China) to treat WT PK-15 cells and p53-/- PK-15
cells and the expression of TGEV gRNA, N and ORF7 were detected.
Results showed that exogenous IFN-β treatment displayed less efficacy
to inhibit TGEV replication in p53-/- PK-15 cells compared to WT PK-15
cells (Fig. 6F–H).

4. Discussion

In response to virus infection, host can activate many mechanisms
to act antiviral function (Zuniga et al., 2007). For instance, host cells
can increase the production of type I IFN and activate type I IFN sig-
naling to mediate immune responses against viral infection (Zuniga

et al., 2007). Also, host impairs virus replication through induction of
p53 pathways upon some virus infection (Melchert, 2008; Zhu et al.,
2014). Much more evidence for cooperation between type I IFN and
p53 to their antiviral activities have been confirmed (Melchert, 2008).
For example, as a transcription factor, p53 can bind to promoter region
of IFN-related genes to transcriptionally regulate the expression (Mori
et al., 2002; Takaoka et al., 2003), and type I IFN can also induce p53
expression (Imbeault et al., 2009; Melchert, 2008). In this study, we
demonstrated that p53 played an essential role in IFN-β-mediated an-
tiviral activity at the early stage of TGEV infection.

Virus infection commonly triggers the activation of pattern-re-
cognition receptors (PRRs) to motivate innate immune responses
(Negishi et al., 2012). Two main classes of PRRs have been identified:
membrane-bound receptors, including the Toll-like receptor (TLR) fa-
mily, and cytosolic receptors, including the RNA helicase RIG-I–like
receptor (RLR) family (Honda and Taniguchi, 2006). It is known that
TLR- and RLR-mediated signaling events are critical in antiviral im-
mune responses (Blasius and Beutler, 2010; Negishi et al., 2012;
Takeuchi and Akira, 2010). To date, many members of TLRs and their
respective ligands have been identified. For example, TLR2/4 usually
respond to viral protein structures (Kawai and Akira, 2007). TLR3 re-
cognizes double-stranded RNA (dsRNA) (Alexopoulou et al., 2001).
TLR7/8 mediates recognition of single-stranded RNA (ssRNA) (Heil
et al., 2004; Hemmi et al., 2002). Then, TLR7/8 and TLR9 use myeloid
differentiation primary response gene (MyD88), TLR3 utilizes TIR-do-
main-containing adaptor-inducing IFN-β (TRIF), TLR1/2 and TLR2/6
utilize MyD88 and TIR domain-containing adapter protein (TIRAP)/
Mal, TLR4 utilizes four adapters, including MyD88, TIRAP/MAL, TRIF

Fig. 5. Effect of p53 on TGEV genes mRNA
expression. (A–C) Virus gRNA, sgmRNA-N and
sgmRNA-ORF7 levels. WT and p53-/- PK-15
cells were infected with TGEV at MOI of 0.1 for
different time. The cells were collected and
subjected to qRT-PCR analysis. Data are
mean ± SEM. ** P < 0.01. (D) Viral titers
were detected by TCID50 assays at the in-
dicated times. Data are mean± SEM. # P <
0.05. (E) WT and p53-/- PK-15 cells were
treated with pan apoptosis inhibitor Z-VAD-
FMK, and then infected with TGEV at MOI of
0.1 for 24 h. The cells were collected and
subjected to qRT-PCR analysis for TGEV
genomic RNA and sub genomic mRNA. Data
are mean± SEM. * P < 0.05, ** P < 0.01
was considered significant.
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and TRIF-related adapter molecule (TRAM), to induce type I IFN to
exert antiviral effects (Bauer and Hartmann, 2008; Kawai and Akira,
2007). In our study, TRIF and TRAM mRNA expression levels were
remarkably impaired in p53-/- PK-15 cells compare with that in WT PK-
15 cells. In addition, resveratrol significantly down-regulated TGEV-
induced IFN-β mRNA expression in p53-/- PK-15 cells and WT PK-15
cells, suggesting that p53 plays a vital role in regulation of TRIF and
TRAM-induced IFN-β production upon TGEV infection.

The RIG-I-like receptors (RLRs), RIG-I and MDA5, recognize ssRNA
and dsRNA to initiate innate antiviral immune responses (Brunen et al.,
2013; Huang et al., 2017; Jr and Medzhitov, 2002; Takaoka et al.,
2003). RIG-I and MDA5 also contain two N-terminal caspase recruit-
ment domains (CARDs) (Satoh et al., 2010), and the N-terminal CARDs
of RIG-I and MDA5 trigger intracellular signaling pathways via IFN-β
promoter stimulator (IPS-1) (also known as MAVS), which activates
TANK-binding kinase 1 (TBK1) and IKK-I, subsequently induce the
transcription of type I IFN and IFN-inducible genes (Satoh et al., 2010).
In response to various RNA viruses infection, host could activate RIG-I
to induce the production of type I IFN, such as vesicular stomatitis virus

(VSV) (Das et al., 2014), Sendai virus (SeV) (Okano et al., 2011), Ja-
panese encephalitis virus (JEV) (Jiang et al., 2014), and influenza virus
(Ichinohe, 2010), whereas MDA5 is critical for the detection of infec-
tion bursal disease virus (IBDV) (Lee et al., 2014) and en-
cephalomyocarditis virus (EMCV) (Pichlmair et al., 2009). Also, some
RNA viruses such as Measles virus (Ikegame et al., 2010), West Nile
virus (Fredericksen et al., 2008), Rhinovirus (Slater et al., 2012) and
Reovirus (Sherry, 2009) are recognized by both RIG-I and MDA5. Stu-
dies showed that RIG-I and IPS-1 are p53-regulated genes, for example,
p53 expression was associated with higher basal mRNA and protein
levels of RIG-I in response to IFN treatment (Muñoz-Fontela et al.,
2008a). Over-expression of p53 could inhibit IBDV replication and up-
regulate the expression level of IPS-1 (YANG et al., 2016). In the present
study, RIG-I, MDA5 and IPS-1 mRNA expression levels were remarkably
impaired in p53-/- PK-15 cells compare with that in WT PK-15 cells. In
addition, inhibition of RLR pathway by BX795 significantly down-
regulated TGEV-induced IFN-β mRNA expression in p53-/- PK-15 cells
and WT PK-15 cells, suggesting that p53 plays an important role in
regulation of RIG-I/MDA5/IPS-1 -induced IFN-β production upon TGEV

Fig. 6. The effect of poly (I:C) and exogenous IFN-β on expression of IFN-β and TGEV genes. WT and p53-/- PK-15 cells were pretreated with 5 μM of poly (I:C), then
the cells were infected with TGEV for 24 h. The cells were collected and subjected to qRT-PCR analysis for IFN-β (A) and ISG15 (B) expression. (C–E) TGEV gRNA,
TGEV N and ORF7 expression. WT and p53-/- PK-15 cells were treated as in (A and B), the cells were collected and subjected to qRT-PCR analysis. Data are
mean ± SEM. * P < 0.05, ** P < 0.01. (F-H) WT and p53-/- PK-15 cells were treated with exogenous IFN-β (1000IU/ml), and then infected with TGEV at MOI of
0.1 for 24 h. The cells were collected and subjected to qRT-PCR analysis for TGEV genomic RNA and sub genomic mRNA. Data are mean±SEM. ** P < 0.01 was
considered significant.
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infection.
We also detected intracellular IFN-β mRNA and the extracellular

secretion of IFN-β at indicated time. As respected, the mRNA and the
protein levels of IFN-β consistently maintained low levels in p53-/- PK-
15 cells, including 28 h and 32 h of TGEV infection (data not shown).
However, at 36 h p.i., p53-/- PK-15 cells have higher levels of IFN
mRNA but lower in protein levels. We infer that the secretion of IFN-β
in cell supernatant might lag behind the gene expression, which may be
the reason why p53-/- PK-15 cells have lower protein levels at 36 h p.i.
To further investigate why the mRNA levels of many genes (TRIF, RIG-I
and TRAM) were higher at 36 h p.i. in p53-/- PK-15 cells compared with
WT PK-15 cells, we detected the apoptotic gene expression at 36 hpi.
The results showed that Bcl-2 mRNA levels were down-regulated in WT
PK-15 cells compared to p53-/- PK-15 cells (Supplement Fig. 1). Hence,
we speculated at late stage of TGEV infection, p53 might mainly reg-
ulate apoptosis while not antiviral genes, suggesting that p53 might
play different role at different stage of TGEV infection.

When type I IFN was released from infected cells, it bind to its re-
ceptor to trigger a series of signaling factors which form a hetero-
trimeric complex ISGF3 (Harada et al., 2010). The latter then bind to
the IFN stimulated response elements (ISREs), which present in the
promoters of IFN-stimulated genes (ISGs), leading to the activation of
antiviral responses (Harada et al., 2010). Many researches have been
confirmed that p53 directly transcribed several target genes, to influ-
ence type I IFN signaling, such as ISG15, IRF9 and IRF3 (Choi et al.,
2014; Melchert, 2008; Muñoz-Fontela et al., 2008a, b; Park et al.,
2016). In our study, IRF9, IRF3, ISG15 and ISG20 mRNA expression
levels were remarkably impaired in p53-/- PK-15 cells compare with
that in WT PK-15 cells, suggesting that p53 plays a vital role in reg-
ulation of IFN production and IFN signaling upon TGEV infection.

In response to virus infection, host induce or enhance the type I IFN
to inhibit the replication of virus or the progeny production (Muñoz-
Fontela et al., 2008a). In this study, as above, p53 played a vital role in
IFN-β induction and IFN-β signal pathways during TGEV infection. We
further confirm the regulatory role of p53 on TGEV replication and
production at low titer of virus infection. Results showed that virus
gRNA and sgmRNA levels enhanced in p53-/- PK-15 cells compared to
that in WT PK-15 cells when infected with TGEV (0.1 MOI). In addition,
the pan apoptosis inhibitor down-regulated the levels of TGEV gRNA
and sgmRNA-N, whereas the genes expression in WT PK-15 cells was
lower than that in p53-/- PK-15 cells. While in our previous research,
we indicated that when 10 MOI of TGEV infected cells, the virus genes
mRNA levels in p53 inhibitor-treated cells were higher than control
cells at 12 h p.i., but it did not appear significant increase (Huang et al.,
2013). These results and difference suggest that p53 might be through
activating type I IFN signaling to inhibit viral replication during TGEV
infection with lower virus titers, and the apoptosis might be benefit to
viral replication. However, in high viral titer infection, p53 might
mainly act its proapoptotic functions. In this condition, the occurrence
of cell apoptosis might play some role in virus assembled and live virus
liberation. These results were similar to influenza A virus (IAV) and
human immuno-deficiency virus type 1 (HIV-1) (Mukerjee et al., 2010;
Shi et al., 2018; Zhu et al., 2014). In addition, as a strong IFN inducer,
poly (I:C) co-treated WT PK-15 cells with TGEV, showed a sharp up-
regulation in the expression of IFN-β and IFN-simulated gene compared
to poly (I:C) treatment only. And TGEV gRNA and sgmRNA levels
showed a significant decrease in poly (I:C) and exogenous IFN-β-treated
WT PK-15 cells. These findings indicate that p53 effectively enhance
TGEV- and poly (I:C)-induced IFN signal, and was crucial for heigh-
tening antiviral activity mediated by type I IFN.

In conclusion, we elaborated a mechanism of p53-mediated the
enhancement of TRIF, TRAM and RIG-I/MDA5/IPS-1 pathways, re-
sulting in IFN-β production, which in turn activated IFN-β signals to the
induction ISGs and IRF9, resulting in a marked decrease of viral re-
plication at 0.1 MOI of TGEV infection. Our results demonstrated that
p53 played a crucial role in innate immunity through enhancing type I

IFN-dependent antiviral activity.
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